Increasing Average Period Lengths by Switching of Robust Chaos Maps in Finite Precision

نویسندگان

  • Nithin Nagaraj
  • Mahesh C. Shastry
  • Prabhakar G. Vaidya
چکیده

Grebogi, Ott and Yorke (Phys. Rev. A 38(7), 1988) have investigated the effect of finite precision on average period length of chaotic maps. They showed that the average length of periodic orbits (T ) of a dynamical system scales as a function of computer precision (ε) and the correlation dimension (d) of the chaotic attractor: T ∼ ε. In this work, we are concerned with increasing the average period length which is desirable for chaotic cryptography applications. Our experiments reveal that random and chaotic switching of deterministic chaotic dynamical systems yield higher average length of periodic orbits as compared to simple sequential switching or absence of switching. To illustrate the application of switching, a novel generalization of the Logistic map that exhibits Robust Chaos (absence of attracting periodic orbits) is first introduced. We then propose a pseudo-random number generator based on chaotic switching between Robust Chaos maps which is found to successfully pass stringent statistical tests of randomness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodicity of chaotic trajectories of single and coupled maps in realizations of finite computer precisions

A fundamental periodicity problem of chaotic trajectories in computer realization with finite computation precision is investigated systematically by taking single and coupled Logistic maps as examples. Low-dimensional chaotic trajectories have rather short periods even with double precision computation, while the period increases rapidly when the number of coupled maps increases. Empirical exp...

متن کامل

Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation

Because of the mixing and aperiodic properties of chaotic maps, such maps have been used as the basis for pseudorandom number generators (PRNGs). However, when implemented on a finite precision computer, chaotic maps have finite and periodic orbits. This manuscript explores the consequences finite precision has on the periodicity of a PRNG based on the logistic map. A comparison is made with co...

متن کامل

Investigation of Important Parameters in Residual Stress Determination in Isotropic Plates and Laminated Composites by Slitting Method

In the slitting method, a small width slit is created incrementally through the thickness of the stressed specimen and the released strains in each increment are recorded by a strain gauge. Compliance coefficients relate the measured strains to the residual stresses. This paper investigates the important parameters influencing the calculation of compliance coefficients for isotropic plates and ...

متن کامل

Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications

Fundamental problems of periodicity and transient process to periodicity of chaotic trajectories in computer realization with finite computation precision is investigated by taking single and coupled Logistic maps as examples. Empirical power law relations of the period and transient iterations with the computation precisions and the sizes of coupled systems are obtained. For each computation w...

متن کامل

Investigation of resistive switching in anodized titanium dioxide thin films

In this work, TiO2 nanostructures were grown on titanium thin films by electrochemical anodizing method. The bipolar resistive switching effect has been observed in Pt/TiO2/Ti device. Resistive switching characteristics indicated the TiO2 nanotubes are one of the potential materials for nonvolatile memory applications.  Increasing anodizing duration will increase nanotube lengths which itself c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008